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SUMMARY 

Square-root (or Ratkowsky) models are a special case of B~lehrfidek's temperature rate-relationship first published in 1926 and widely used in several 
fields of biology. B61ehrfidek-type models also describe microbial growth, and have been extended for use in food microbiology by the inclusion of terms for 
water activity and pH. The parameters of the square root-type models are defined and their determination described. Favorable features of square root-type 

models include parsimony, parameter  estimation properties, and ease of use. Square root-type models have been developed for a number of organisms of 
concern to the food industry and have also been adopted for use in a number of electronic devices used in predictive microbiology. Criticisms of square root- 
type models are also considered. 

HISTORY AND DEVELOPMENT 

Models for the suboptimal temperature range 
In 1926 B~lehrfidek and Porodko independently published 

the same formula which described the duration (or rate) of 
biological reactions as functions of temperature [3]. The 
function was: 

a 
Y = ~G (1) 

where y = duration of reaction, 
x = temperature in ~ and 
a,b = constants to be fitted. 

The transformation 

log (y) = log (a) - b log (x) 

shows that the parameter a represents the duration of the 
process at 1 ~ and that the parameter b is a coefficient 
describing the effect of temperature on the reaction duration. 

B61ehrfidek noted that the function often did not fit the 
data well at very low temperatures or at temperatures above 
the optimum for growth and subsequently published [3] a 
modified form of the equation which does not assume that 
the response time at 0 ~ is infinite, or, to use his terminology, 

Correspondence to: T. Ross, Dept. of Agricultural Science, Univer- 
sity of Tasmania, G.P.O. Box 252C, Hobart 7001, Tasmania, 
Australia. 
Mention of brand or firm names does not constitute an endorsement 
by the US Department of Agriculture over others of a similar 
nature not mentioned. 

recognizes that the 'biological zero' of the reaction may be 
other than 0 ~ This equation was written: 

a 

y - (t_a)o (2) 

where a, b and y have the same meaning as in Eqn 1, 
t = temperature in ~ and 
a = difference between the 'biological zero' and 

0 ~ or more simply, 'the biological zero'. 

More than half a century later Ratkowsky et al. [31] 
published the following expression relating the rate of 
microbial growth processes to temperature: 

V r  =- b ' ( T - r o )  (3) 

where: r = rate of process, 
T = temperature in Kelvin, 
To = a conceptual temperature of no metabolic 

significance but which is an intrinsic property 
of the organism and 

b' = the regression coefficient. 

The equation was suggested by Ohta and Hirahara [27] who 
found empirically that a plot of temperature-vs-the square 
root of the rate of nucleotide degradation in cool-stored 
carp muscle was nearly linear. Noting that the duration of 
a reaction (y) is the reciprocal of its rate (r), Eqn 3 is seen 
to be a special case of Eqn 2 in which the exponent, b, has 
the value 2 and b' - X/~. The use of the Kelvin temperature 
scale was recommended to avoid possible confusion regarding 
the sign of To. 

Ratkowsky et al. [31] developed Eqn 3, which has come 
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to be known as 'the square root model', without knowledge 
of B61ehr~idek's work, yet Eqn 2 has been used in biology, 
and particularly aquatic zoology, for many years [33]. 

B61ehr~idek did not have available to him the statistical 
knowledge and computing power we enjoy today and stated 
that the calculation of a of Eqn 2, analogous to To of Eqn 
3, was not a simple mathematical operation and that a could 
only be assessed graphically with an accuracy of 5-10 ~ 
[4]. In practice, B61ehrfidek fitted the parameters by con- 
structing a log-log plot after estimating a value for a, i.e. 

log (y) = log (a)- (b)  log ( t - a )  (4) 

Ratkowsky (pers. comm.) found, upon examination of 
the residuals of bacterial growth rate data when fitted to 
Eqn 3, that the exponent 2 is, or very nearly is, the 
most appropriate value for this parameter. Furthermore, 
McMeekin et al. [21] using nonlinear regression fitted an 
extensive data set for the growth of Staphylococcus xylosus 
to Eqn 2. The exponent, b, was estimated to be 1.97 -+ 0.04. 
These observations support the validity of the square root 
model which, because the exponent is a constant value, may 
be fitted in the form of Eqn 3 by simple linear regression 
(subject to stochastic considerations discussed later). 

Ratkowsky et al. [31] showed: that Eqn 3 fitted 71 
original data sets for the growth of bacterial populations, as 
well as 41 data sets obtained from the literature and 
other independent sources; that it also describes well 
the temperature/rate relationship of the deterioration of 
proteinaceous foods; and that it describes the growth rate 
response of several yeasts investigated. Equation 3 has been 
shown to describe the growth rate responses of many species 
of bacteria by other workers [5,13,19,37] and Bremner et 
al. [7] have shown that Eqn 3 describes organoleptic changes 
associated with the deterioration of seafood products. 

Models for the full biokinetic temperature range 
Ratkowsky et al. [30] presented an extension of Eqn 3 

which enables it to model growth over the entire biokinetic 
range, that is, from the minimum to the maximum tempera- 
tures permissive for growth. This equation is: 

~/r = b ( T -  Tmi~) (1-exp[c{ T -  Tmax}]) (5) 

where: r and T have the same meaning as in Eqn 3, 
Tmin = a lower theoretical temperature, analogous 

to To of Eqn 3, at and below which no 
growth is possible, 

Tmax = an upper theoretical temperature at and 
above which no growth is possible and 

b and c are parameters to be fitted. 

Equation 5 is nonlinear, and requires more complex 
techniques to fit than does Eqn 3. Ratkowsky et al. [30] 
state that by fitting Eqn 5 to data an estimate of Topt, the 
temperature at which the growth rate is maximal, can be 
obtained and that together with the paramters Train and Tmax 

these may be considered to be cardinal temperatures 
by which organisms may be classificed as psychrophiles, 
mesophiles or thermophiles more objectively. 

Kohler et al. [16], Heitzer et al. [15] and Zwietering et 
al. [39] fitted data to a form of Eqn 5 in which both sides 
of the equation were squared so that the response variable 
is rate. From this modified form Zwietering et al. [39] 
developed another modified form of Eqn 5 in which 
the superoptimal component, (1-exp[c{T-Tm,x}]),  is not 
squared. They showed that when Eqn 5 is expressed with 
rate as the dependent variable the decline in specific growth 
rate above the optimum temperature for growth is described 
better by an exponential function than the square of an 
exponential function. This second Zwietering et al. [39] 
model is written, using consistent nomenclature: 

r = [b(T-  Tmin)l 2 ( 1 - exp [c (T -  Tm,x)l} (6) 

Most work in predictive microbiology which has relied 
on B61ehrfidek-type models, has centered on the use of the 
simple square root model, Eqn 3, which is now usually 
written: 

i 

vr = b ( T -  Train) (7) 

where all parameters are as previously defined. 
It is noteworthy that this model has been incorporated 

into several commercially available electronic devices 
developed for the prediction of product safety and remaining 
shelf-life on the basis of temperature history. The two 
devices that are currently marketed are the Remonsys 
Smartlog (Remonsys Ltd, Unity Rd, Bristol BS18 1NH, 
UK) and the Delphi Temperature Logger (Management 
Information Resources Ltd, PO Box 3680, Wellington, New 
Zealand). The Smartlog is a temperature logger which, in 
addition, features on-board processing of the temperature 
history to provide an indication of the remaining shelf-life 
of the product relative to that at some preferred storage 
temperature. The estimate of the elapsed shelf-life is based 
on the concept of relative rates, discussed later, and is 
calculated using Eqn 7. The Delphi Logger is a compact 
and robust temperature logger originally designed for New 
Zealand's export meat industry. The logger itself is not 
extraordinary but the accompanying software enables esti- 
mates of the extent of growth of E. coli under various 
processing and packaging scenarios to be made based upon 
the downloaded temperature history of the product. The E. 
coIi growth data is modeled by a modified form of Eqn 7. 
A system like the Delphi could easily be extended by 
the inclusion of software incorporating models for other 
organisms of interest. A single temperature history could 
then be interpreted in terms of the potential growth of any 
organism for which a model was included. 

Models incorporating the effect of other rate modifying factors 

(i) Water activity. McMeekin et al. [21] presented a model 
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which describes the combined effects of water activity and 
temperature on growth and lag phase resolution rate for 
Staphylococcus xylosus in the sub-optimal temperature and 
water activity ranges. A general form of this model was 
proposed by Chandler and McMeekin [9] which may be 
written: 

i r  = b\/ (aw-aw~i.) ( T -  Train) (8) 

where: r, T, and Tmi, are as previously defined, 
b = a regression coefficient, 
aw = water activity and 
aw~.in = a theoretical water activity at and below 

which the response time is infinite. 

Equation 8 is a synthesis of Eqn 7 and the observed growth 
rate response of bacteria to aw, which may be modeled by 
the expression: 

rate = C(aw-awmin  ) (9) 

where C is a regression coefficient. The growth rate response 
to water activity had been observed earlier [36]. McMeekin 
et al. [21] and Chandler and McMeekin [9,10] showed that 
Tmi. did not change with changing water activity or the 
humectant used, but that the aw~, was dependent upon the 
humectant. 

The form of the equation is a reflection of the observation 
that the effects of temperature and water activity are 
additive, rather than synergistic. This observation is also 
apparent in Davey's Modified Arrhenius Model [11]. Where 
either temperature or water activity is constant Eqn 8 
simplies readily into Eqn 9 or Eqn 7 respectively. Equation 
8 has been successfully applied to the growth of other 
organisms. Ross and McMeekin [34] developed a model of 
the type of Eqn 8 for the growth of Staphylococcus aureus 
and Hayward [14] constructed models of the type of Eqn 8 
for several strains of Aeromonas hydrophila. 

(ii) pH. Adams et al. [2] used a similar experimental 
approach to that of McMeekin et al. [21] to develop models 
for the combined effects of pH and temperature on the 
growth of Yersinia enterocolitica for a variety of acidulants. 
The models which they developed have the general form: 

~/r = b" i(pH-pHmin) ( T -  Train) (lO) 

where: r, T, Tm~n have the same meaning as above, 
b" = a regression coefficient 
pHmi ~ = a 'theoretical' pH at and below which 

the growth rate is 0 (analogous to awmi" 
in Eqn 8). 

The parameter pHm~n was found to be dependent upon the 
acidulant used but Tm,n was found to remain invariant, 
indicating that pH and temperature also act independently. 

McMeekin et al, [24] have speculated on the possibility 

of a model of the square root type which encompasses the 
effects of temperature, water activity and pH and which 
might have the form: 

@" = C~[(aw-awmin) ~,/(pH-pHmin) ( T-Tmin) (11) 

ESTIMATION OF THE PARAMETER VALUES 

Estimation of the values of the parameters of the simple 
square root model and its derivatives has been undertaken 
by a number of methods. The simple square root model, 
Eqn 7, may be fitted by simple linear regression which 
yields an equation of the form: 

y = b x + c  

7 - -  
where x = T(K), y = ,~,rate, b = the regression coefficient, 
and -c/b = Train- Figure 1 depicts a typical square root plot 
and shows the interpretation of the parameters. Note that 
the parameter Tram is the intercept of the regression line 
through the data with the temperature axis, not the minimum 
temperature at which growth is observed. Similarly Tmax is 
a notional temperature given by the intercept of the 
regression line with the temperature axis, and is not the 
same as the maximum temperature at which growth is 
observed. The parameter b is the slope of the regression 
line in the suboptimal region. The parameter c is a regression 
coefficient related to the rate of decrease of growth rate 
with increasing temperature above the optimum for growth. 
The Kelvin scale is advocated to avoid potential confusion 
regarding the sign of Train [24]. 

Equations 5 and 6 must be estimated by nonlinear 
regression procedures which employ an iterative process and 
require the estimation of initial parameter values. It is an 
advantage of the square root-type models that they have 
readily interpretable parameters which aid this process. 
Methods for deriving initial parameter estimates of Eqn 5 
are given by Ratkowsky [28] and are also appropriate for 
Eqn 6. Interpretation of the parameters of Eqn 5 are also 
shown in Fig. 1. 

There is a strong temptation, when generating models of 
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Fig. 1. A typical square root plot encompassing data throughout 
the biokinetic range, showing the interpretation of the parameters 

of Eqn 7. 



the type of Eqn 8 or Eqn 10 to build the model sequentially, 
that is, to generate data from which to derive a value for 
the parameter  Tmin, and then to generate data to derive a 
value for the second parameter,  and so on. This methodology 
was employed [21,34] for Eqn 8, and for Eqn 10 [2] using 
simple linear regression, as shown in Fig. 2(a,b). McMeekin 
et al. [21] and Adams et al. [2] generated simple square 
root equations at many water activity levels and pH levels 
respectively. The parameter  b of the square root equations 
changed systematically with changes in these variables. 
Linear regression of b2-vs-rate was performed to determine 
awmi n or pHmin respectively. From the data of McMeekin et 
al. [21] and Chandler and McMeekin [9], Ross and McMeekin 
[34] concluded that Tmi, was independent of water activity 
and estimated awi" by calculating a linear regression for 
water activity-vs-growth rate from data obtained isothermally. 
If it were demonstrated that these parameters (T~i,, awm~ ., 
pHm~,) are invariant properties of the modeled organism for 
a given humectant or acidulant for example, then a rapid 
and efficient method for generating models can be envisaged. 
Equations 8 and 10, however, are nonlinear models and the 
rigorous method for developing models of this type is to fit 
all data simultaneously using nonlinear regression techniques. 
Nonetheless, given sufficient reliable data the two approaches 
would be expected to generate models with very similar 
parameter estimates. 

(a) 
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Fig. 2. Estimation of awmin and pH~in, using awmin as an example. 
(a) shows the estimation method of McMeekin et al. [21] (reproduced 
from McMeekin et al. [21] with permission of Blackwell Scientific 
Publications). The method of Ross and McMeekin [34] is shown in 
(b) (reproduced from Ross and McMeekin [34], with permission of 
the Council of Australian Food Technology Associations Inc. and 
the Australian Institute of Food Science and Technology Ltd). n.b. 

Generation rate = generations per unit time. 
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It is apparent from the form of Eqns 8 and 10 that, were 
temperature held constant, these models would degenerate 
into simpler models such as: 

B 5 (aw-awmi~) (12a) 

or  

r = (B') 2 (aw--awmin) (12b) 

and 

i C \l (pH-pHmin  x/r= ' ' (13a) 

or  

r = (C ' )  2 (pH-pHmin)  (13b) 

Data may be fitted to these functions by simple linear 
regression expressed with rate as the dependent variable 
(Eqns 12b and 13b), obtained by squaring both sides of 
equations 12a and 13a, respectively. Such a transformation 
may be statistically invalid, however, as will be demonstrated 
below. 

A D V A N T A G E S  OF THE SQUARE ROOT MODELS 

To most users of predictive models the most important 
question is: how well does the model describe the data. Of 
even greater importance is how accurately the model predicts, 
that is, how well it models observations not used to 
estimate the values of the parameters of the model. These 
characteristics of the model are intimately related to a 
number of other properties of models which are considered 
by Ratkowsky [29] who lists criteria which may be used to 
compare and evaluate competing models. His list includes: 

appropriateness of the stochastic assumption, 
parsimony, 
parameter estimation properties, 
interpretability of parameters and 
range of variables. 

Although an assessment of the square root models in relation 
to the above criteria will be considered here readers are 
referred to Ratkowsky [29] for a full discussion of their 
importance. 

Goodness-of-fit 
McLaren [20] ascribed the popularity of B61ehrfidek-type 

models to the fact that they have few parameters, i.e. they 
are parsimonious, and that they fit the data well. In relation 
to the square root-type models, comparisons which have 
been undertaken [15,32,39] suggest that the square root 
model and its various derivatives describe bacterial growth 
responses to temperature at least as well as the other models 
that have been advocated for use in predictive microbiology. 
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Li [17] applied Eqn 5 to the description of growth rates 
of phytoplankton assemblages and concluded that 'the 
Ratkowsky model not only fits the data well but has 
parameters that are easily identified with biological concepts'. 

It is important to recognize that goodness-of-fit of a 
model to a specific data set does not of necessity translate 
to predictive ability. The most important feature of a 
predictive model is that it accurately models the general 
response. The more parameters that a model has the more 
closely it will be able to model a specific data set, but if 
that data set is not representative of the normal response 
its predictions may be less accurate because the model may 
lack universality [11]. It is a sterile exercise to compare 
goodness-of-fit unless one is confident that the data used 
for the comparison are representative of the typical response. 
In practice replicated data are required, and particularly 
where the response is very variable such as when the 
organism is growing near to the limit of its growth range. 
These considerations are emphasized by the comparison of 
models undertaken by Zwietering et al. [39] who distinguished 
variability within the data from lack of fit. 

Predictive ability 
Several published reports deal with the predictive ability 

of square root-type models. Chandler and McMeekin [8] 
developed and validated a square root-type model for the 
psychotrophic spoilage of milk. Smith [38] found that 
predictions from his previously derived model [37] could be 
used to estimate the increase in coliforms, E. coli and 
salmonellae on meat allowed to warm again after overnight 
chilling. In most cases the predictions were within one 
'population doubling' of the observed results. Ross and 
McMeekin [34] derived a model of the type of Eqn 8 for 
the growth rate of Staphylococcus aureus in response to 
temperature and water activity (NaC1 as humectant). Though 
the data were generated from optical density measurements 
in laboratory broths, the model predicted well the growth 
of the same organism on seafood products under 17 different 
conditions of water activity and temperature determined by 
viable count methods. The numerous publications and 
industry application of the results of work performed at the 
Meat Industry Research Institute of New Zealand, under 
the direction of C.O. Gill, are further examples. 

Parsimony 
It is desirable to be able to differentiate the true general 

response underlying the observed data from the trends in 
specific data sets. As stated above, models with many 
parameters may lack universality and in this regard parsimoni- 
ous models are likely to be more robust because they have 
fewer parameters with which to accommodate unusual points. 
The square root-type models are the most parsimonious of 
any of the models presented in the literature to date, but 
achieve parsimony without sacrificing goodness-of-fit [39]. 
One might infer from this that the square root-type models 
more accurately model the true response, i.e. the response 
which is most representative of the typical behavior. 

Parameter interpretability 
The parameters of the square root-type models, although 

having no certain physiological interpretation, are easily and 
clearly defined allowing the effect of individual factors to 
be easily assessed, and allowing for simplification of the 
expression if one independent variable is constant (see Eqns 
12a and 13a). Li [17], however, discusses possible biological 
interpretations of the parameters of Eqn 5 and Ross [33] 
reviewed discussion concerning the parameters of Eqn 2. 
Parameter interpretability also aids in the derivation of initial 
parameter estimates for nonlinear regression procedures. 

Parameter estimation behavior 
The square root-type models display close to linear 

behavior which leads to good parameter estimation properties 
[16]. 

Stochastic assumptions 
Ratkowsky et al. [32] analyzed the behavior of the 

variability of bacterial growth rate estimates. The importance 
of this behavior is that it dictates how growth rate data 
should be manipulated to yield reliable predictive models 
and provides information about the confidence one can have 
that an observation is representative of the 'usual' response. 

Using the data of Smith [37] Ratkowsky et al. [32] 
showed that, for E. coli the variance in growth rate is a 
function of the rate itself, that is, the faster the rate, the 
greater the variance in rate. The implication of this is that 
when models are fitted to data by the method of least 
squares, as they commonly are, those data having larger 
magnitude will have more influence in the fitting process. 
This is because the sum of the squares will be minimized 
by fitting more closely to those points as was demonstrated 
clearly by McMeekin et al. [23]. 

It is crucial when fitting data by the method of least 
squares that a transformation of the data is found in which 
the variance has the same magnitude irrespective of the 
magnitude of the response, or alternatively that a suitable 
weighting is applied to the data when fitting. The data of 
Smith [37] for the growth rate response of E. coli showed 
that variance is homogeneous in the square root of rate, as 
shown in Fig. 3. The data of Neumeyer [26] for the growth 
of Staphylococcus aureus support this observation. Currently, 
there is insufficient published data to conclude whether one 
transformation of the response variable is appropriate in all 
cases. A more general approach to modeling kinetic data 
has now been advocated by McMeekin et al. [22], who 
recommend that, before modeling, the data be examined to 
reveal the stochastic behavior. A transformation appropriate 
to that behavior should then be applied to the data to give 
all points equal weight in the fitting process. 

The consequences of the stochastic assumption 
Ratkowsky et al. [32], as well as showing that for E. coli 

the variance in bacterial growth rate is homogeneous in 
the square root of growth rate, also demonstrated the 
consequence of this for the prediction of the time for 
bacterial growth processes, such as spoilage or resolution of 
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rate for the generation time data of Smith (pers. comm). O: Var 
~ ;  [3: Var (In rate). (Reproduced from Ratkowsky et al. [32] 

with permission of Blackwell Scientific Publications.) 

the lag phase, to occur. They showed that the variance in 
time, Var(4~), is related to the predicted time, 4~, and the 
variance in the square root of rate, Var(X/r), by the equation: 

Var(ch) = 4 q53 Var(@) (14) 

that is, the confidence intervals of the predicted response 
time widen enormously as the predicted duration of the 
process increases. By using the square root transformation 
and Eqn 14 the variance calculated at one temperature can 
be used to estimate the variance in a predicted response 
time at any other temperature. In view of the increasing 
variability of growth rate estimates under severe growth 
limiting conditions completely accurate predictions cannot 
be made from limited data sets. The significance of the 
constancy of the error in the @ate transformation is that by 
using Eqn 14 one can estimate, from the variance of data 
obtained more easily under less severe growth conditions, 
the variance in growth rate under any other conditions. 
When reliable estimates of the mean response and variance 
are available it will be possible not only to predict a growth 
response but to state the degree of confidence in that 
prediction, and from this to make objective assessments of 
the quality and safety of foods [32]. 

Ease of use 
That the square root-type models are parsimonious 

suggests that they are also easier to work with on a day-to- 
day basis than some other model types proposed. One 
example of this is the relative rate concept which can be 
applied to any product of consistent starting quality and of 
known shelf-life, provided that the Tram of the dominant 
spoilage microbiota is known. For many proteinaceous foods 
of high water activity the dominant spoilers are pseudomonads 
which typically have a Train of -10  ~ From this one can 
derive an expression for the relative rate of spoilage at 
any temperature relative to that at the preferred storage 
temperature. 
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Relative Rate = 
Rate at actual temperature 

Rate at preferred temperature 

b(T-  Train) 2 
b(Tr~f- rmin) 2 

( T -  T~in) 2 

( T r e t -  Train) 2 

where Tref = preferred storage temperature 

which for meat products, with a recommended storage 
temperature of 0 ~ simplifies to: Relative Rate = (0.1 t + 1) 2 
where t is in ~ This relationship forms the basis of the 
Temperature History Index calculated by the Smartlog 
temperature history integrator and logger. By analogy similar 
expressions could be developed for any of the variants of 
the square root model. The relative rate function is easier 
to determine using square root-type models because the 
respective terms are multiplicative and, as a consequence, 
the expression simplifies readily. 

Combined lag and exponential growth models 
Lag phase resolution and exponential growth appear to 

have the same Tmin [9,10,21,26] which, provided that the 
lag time is reproducible, enables a single model to be 
developed for the time taken for a population to achieve a 
particular level of growth including resolution of the lag 
phase. This property is of particular use when predicting 
shelf-life because a single model may be used rather than 
separate models for lag resolution and subsequent growth 
of the population to spoilage levels. 

Implications for experimental design 
As alluded to previously the observations that temperature 

and water activity, and temperature and pH act independently 
have particular advantages for a model of the form of the 
modified square root models, Eqns 8 and 10, because it 
suggests that the parameters Train, pHmi, and aWmin may be 
considered to be constants. Thus simple experiments could 
be performed independently to derive accurate values for 
these parameters, which could then be substituted into the 
equations. 

This approach would enormously reduce the workload 
required to accumulate the data normally considered neces- 
sary to build reliable predictive models for food microbiology. 
For example, if one were interested in the growth of 
Salmonella in food in which water activity was modified by 
NaC1 a model of the type of Eqn 8 could be constructed by 
performing two experiments. The first, at constant aw and 
multiple temperatures would enable determination of Train; 
the second at constant temperature and multiple aw would 
enable determination of awmin. The parameter b can be 
evaluated by substitution. It is tempting to speculate that a 
three-variable model, such as Eqn 11, might be constructed 
analogously by performing three simple experiments. It must 
be remembered, however, that at this time the parameters 
Train, awmi, and pHmi~ are statistical estimates of characteristics 
that by definition cannot be measured directly, and that 
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consideration would have to be given to the amount and 
range of data used to derive those parameter values. 
Currently there are insufficient data on the combined 
effects of these three variables and whether they all act 
independently. In addition one would have to perform 
replicated experiments under several sets of conditions to 
enable determination of the variance in ~/r. 

CRITICISMS OF THE SQUARE ROOT MODEL 

Several criticisms of the square root model have been 
expressed and are considered below. 

Poor fit to data 
The most direct criticism was that of Adair  et al. [1]. 

Their conclusions were criticized [15,23,32,39] because their 
method of comparison did not take into account that 
mathematical transformation of data results in a different 
weighting of different numerical values, i.e. the stochastic 
assumptions inherent in their comparison were unsound. 

Tmi~ does not represent the minimum growth temperature 
Train was defined earlier and it has been emphasized that 

this parameter does not represent the minimum temperature 
at which growth is measurable. It has been observed [9,10, 
21] that as environmental conditions become more severe 
the rate of growth slows and the minimum temperature at 
which growth is observed increases. A possible interpretation 
of this may be found by considering a simple model of 
growth in which, under constant conditions, the cell requires 
a fixed amount of energy to maintain basal functions 
and directs any surplus energy towards reproduction. As 
conditions become less favorable for growth, for example 
due to lower water activity, the cell requires more energy 
for basal functions such as production of compatible solutes, 
active transport of ions, etc. and consequently has less 
available for reproduction. Consequently it takes longer to 
accumulate the surplus energy required to replicate, perceived 
as a slower growth rate. We may also apply thermodynamics 
to the interpretation of the minimal temperature for growth. 
Using the reconciliation of the Arrhenius Law and Eqn 7 
[21]: 

2R T 2 
E - (15) 

T-Zmin 

to estimate the activation energy (E) for growth from square 
root model parameters, it is apparent that an increase in 
the minimum temperature at which growth is possible may 
be interpreted as an increase in the energy barrier to growth. 

Continuing this paradigm, it is interesting to speculate 
whether as temperature falls the metabolic rate of mainte- 
nance functions declines towards the same Tmin as the growth 
rate response. This possibility could be investigated by, 
for example, determining the response to temperature of 
metabolic rate using as an index the rate of CO2 evolution. 

Lack of  fit at low temperatures 
Anecdotal evidence has suggested that the simple square 

root model shows a systematic lack of fit at low temperatures, 
i.e. near Train. A number of explanations have been 
suggested. One is that when a cocktail of organisms is used 
to generate data the individual strains may be expected to 
have different Tmin and b values. It can be shown both 
mathematically [22] and practically [14] that the consequence 
of this is that the resultant square root plot is similar to 
that which would be obtained if the individual square root 
plots were superimposed, as shown in Fig. 4, which shows 
that although the response of each organism obeys the 
square root relationship, the response of the population is 
a combination of the individual responses. This occurs 
because the population growth rate at any temperature will 
tend toward that of the strain which grows fastest at that 
temperature, as that strain outgrows the other. 

Another explanation is that when collecting data one 
may expect variation in the rates observed and that there is 
a systematic bias against the collection of data representative 
of slower growing cultures, i.e. those data which would 
fall below the regression line, because the experiment is 
terminated before such data are collected. 

An empirical model 
The second line of criticism, though not explicitly 

expressed, seems to be mistrust of empirical models. Evidence 
for this may be found in Heitzer et al. [15] who concluded 
that the square root model had equal utility to the Schoolfield 
et al. [35] model 'even though the square root model is 
devoid of any conceptual basis.' 

Draper [12] discusses the relative merits of empirical 
and mechanistic models. He considers mechanistic models 
preferable because: 

(i) they usually contain fewer parameters, 
(ii) they usually fit the data better and 

(iii) they usually extrapolate more sensibly. 
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Fig. 4. A diagram showing the effect on the observed growth rate 
response to temperature of a mixture of two strains/species (assuming 

that each strain is initially present in equal proportion). 
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Of the models currently advocated for use in predictive 
microbiology only the master reaction-type models, of which 
the Schoolfield et al. model [35] has received most attention, 
purport to have a theoretical basis. With regard to Draper 's  
first two reasons for preference, the Schoolfield et al. model 
has more parameters than analogous square root-type models 
and it does not consistently better fit the data. On Draper 's  
third basis for preference, Lowry and Ratkowsky [18] showed 
that the Schoolfield et al. model predicts zero growth rates 
only at infinitely high or infinitely low temperatures. They 
concluded that the model was incomplete as it failed to take 
into account irreversible enzyme reactions. The inability to 
predict zero growth rates at other than infinitely high or 
low temperatures is a characteristic of all Arrhenius-type 
models proposed for use in predictive microbiology, at the 
time of writing. It has been shown [23] that the Schoolfield 
et al. model may produce unrealistic if not impossible 
estimates of its thermodynamic parameters, and Heitzer et 
al. [15] concluded of the thermodynamic constants of the 
master reaction-type models that they 'can no longer be 
regarded as true thermodynamic properties unless a single 
growth rate determining reaction can be identified. As this 
is usually not the c a s e . . . ' .  One is drawn to the conclusion 
that none of the models currently advocated for use in 
predictive microbiology can be considered truly to be 
mechanistic. 

Olley (pers. comm.) has reviewed the contemporary 
literature on conformational thermodynamics of proteins 
and concluded that the Schoolfield et al. model is inadequate 
to describe the effect of temperature on enzyme activity 
because it does not take into account the effect of heat 
capacity changes in the enzyme which are a function of 
temperature and which contribute to the Gibbs free energy 
of reversible denaturation. Brandts [6] developed a model 
similar in concept to the Schoolfield-type models, but which 
incorporated the effect of heat capacity changes. Brandts 
was unable to mechanistically model the heat capacity 
changes as a function of temperature, and used an empirical 
expression to describe the response. Murphy et al. [25] 
presented a mechanistic model for the Gibbs free energy of 
reversible protein denaturation which includes the effect of 
temperature on the heat capacity of proteins. 

Olley and Ross (unpublished) have combined the model 
of Murphy et al. [25] with the Brandts model [6] to yield 
the following master reaction-type model: 

C e x p ( -  2xEa/R 7) 
rate - 1 + exp(-n(A~H*- TAS* +ACp (16) 

[ ( T-  T*14)- Tln { T/T*s} ])/RT) 

where C = a parameter  whose value must be esti- 
mated, 

AEa = activation energy of the reaction catalyzed 
by the rate-limiting enzyme, 

ACp = difference in heat capacity between the N- 
and D-state of the rate-limiting enzyme, 

n = number of amino acid residues in the rate- 
limiting enzyme, 
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T*/~ = temperature (K) at which the AC e contri- 
bution to enthalpy is 0, a constant, 

T*s = temperature (K) at which the ACp contri- 
bution to entropy is 0, a constant, 

AH* = value of enthalpy (per mol amino acid 
residue) at T'H, 

AS* = value of entropy (per mol amino acid 
residue) at T's, 

T = temperature (K) and 
R = gas constant (8.314 J K -~ tool- l) .  

Using parameter values based on representative literature 
values this model generates data that are consistent both 
with a thermodynamic treatment of bacterial growth kinetics 
and with a square root-type model as shown in Fig. 5. The 
goodness-of-fit of the square root model to the data suggest 
that a convergence between empirical and mechanistic 
approaches may ultimately be achieved. This line of investi- 
gation, however, is quite speculative. 

CONCLUSIONS 

Square root-type models have proven to be useful in 
predictive microbiology as well as other fields of biology. 
They fit the data well; are linear or close to linear and 
consequently have good parameter estimation properties; 
have interpretable parameters; are appropriate to the stochas- 
tic properties of bacterial growth rates and are easy to use. 
They have found acceptance by a wide range of workers 
and have been incorporated into commercial devices for 
monitoring the microbiological shelf-life and safety of foods. 

Published criticisms of square root-type models have been 
shown to be unfounded or inappropriate. Rigorous critical 
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Fig. 5. Data generated by the Brandts/Murphy model (Eqn 15), 
and presented as a square-root plot. The parameters were assigned 
the following values: AE, = 80000 J mol-1; C = 1 x 1012 (unit 
volume-time)-1; ACp = 75 J K -1 (tool-amino acid residue)-1; z~H* 
= 4655 J (rnol-amino acid residue)-1; AS* - 18.9 J K -1 (mol-amino- 
acid residue) 1; T~, T~ = 385 K; and the rate-controlling enzyme 
has 300 amino acids residues. Linear regression of the predicted 
rate values at 1-K intervals (O), over the range 285-3008 K, was 

performed. The fitted line (r 2 = 0.999) is shown. 



188 

comparisons that have been undertaken suggest that square 
root-type models perform at least as well as any other  

kinetic models advocated for use in predictive microbiology. 
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